Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37631028

RESUMO

Leishmaniasis is a group of infectious diseases caused by protozoan parasites that belong to the genus Leishmania. Currently, there is no human vaccine, and the available treatments are associated with toxicity, high cost, and the emergence of resistant strains. These factors highlight the need to identify new antileishmanial candidates. In this study, we synthesized twenty-four methoxylated cinnamides containing 1,2,3-triazole fragments and evaluated their antileishmanial activity against the Leishmania braziliensis species, which is the main etiological agent responsible for American Tegumentary Leishmaniasis (ATL). The cinnamides were synthetically prepared using nucleophilic acyl substitution and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. The compounds were characterized using infrared, nuclear magnetic resonance, and high-resolution mass spectrometry techniques. We performed preliminary studies to evaluate the biological activity of these compounds against L. braziliensis promastigotes and axenic amastigotes. Compound 28, N-((1-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-1H-1,2,3-triazole-4-yl) methyl)-3,4-dimethoxy cinnamide, demonstrated relevant antileishmanial activity with low toxicity in murine cells. The selectivity index values for this compound were superior compared with data obtained using amphotericin B. Furthermore, this cinnamide derivative reduced the infection percentage and number of recovered amastigotes in L. braziliensis-infected macrophages. It also induced an increase in reactive oxygen species production, depolarization of the mitochondrial potential, and disruption of the parasite membrane. Taken together, these findings suggest that this synthetic compound holds potential as an antileishmanial candidate and should be considered for future studies in the treatment of ATL.

2.
Chem Biol Interact ; 371: 110333, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592711

RESUMO

Visceral leishmaniasis (VL) is a progressive, debilitating, and potentially fatal disease if left untreated. As a neglected tropical disease (NTD), the available treatment is restricted to a few drugs, which typically must be administered over a long period but are associated with serious adverse effects and have variability in efficacy. In this sense, drug repositioning has been considered an excellent strategy in the search for alternative treatments, especially in reducing the time and cost of the research. In this work, the repositioning potential of amodiaquine (AQ), a well-known antimalarial drug, was investigated for the treatment of VL. AQ showed significant and selective activity against promastigotes (IC50 = 11.6 µg/mL) and intracellular amastigotes (IC50 = 2.4 µg/mL) of L. infantum, being 10 times more destructive to the intracellular parasites than the host cell. In addition, pre-treatment of macrophages with AQ caused a significant reduction in the infection index, indicating a prophylactic effect of this drug. SEM images showed that AQ induces strong shape alterations of the promastigotes with an increase in cell volume with rounding and ribbing (vertical ridges), as well as a shortened flagellum. In addition, AQ induced depolarization of the ΔΨm, an increase in ROS and neutral lipids levels, and changes in the cell cycle in promastigotes, without alterations to the permeability of the parasite plasma membrane. L. infantum-infected macrophages treated with AQ induced the activation of oxidative mechanisms by infected host cells, with an increase in ROS and NO levels. Finally, in vitro interactions between AQ and miltefosine were found to have an additive effect in both biological stages of the parasite, with the ∑FIC50 values ranging from 0.74 to 1.16 µg/mL and 0.54-1.11 µg/mL for promastigotes and intracellular amastigotes, respectively. Overall, these data highlight the utility of drug repurposing and indicate future preclinical testing for AQ itself or in combination as a potential VL treatment.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/metabolismo , Amodiaquina/farmacologia , Amodiaquina/metabolismo , Amodiaquina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Reposicionamento de Medicamentos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Estresse Oxidativo , Mitocôndrias/metabolismo , Pontos de Checagem do Ciclo Celular , Camundongos Endogâmicos BALB C
3.
Pathogens ; 11(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36558863

RESUMO

Malaria is an infectious disease widespread in underdeveloped tropical regions. The most severe form of infection is caused by Plasmodium falciparum, which can lead to development of cerebral malaria (CM) and is responsible for deaths and significant neurocognitive sequelae throughout life. In this context and considering the emergence and spread of drug-resistant P. falciparum isolates, the search for new antimalarial candidates becomes urgent. ß-carbolines alkaloids are good candidates since a wide range of biological activity for these compounds has been reported. Herein, we designed 20 chemical entities and performed an in silico virtual screening against a pool of P. falciparum molecular targets, the Brazilian Malaria Molecular Targets (BRAMMT). Seven structures showed potential to interact with PfFNR, PfPK7, PfGrx1, and PfATP6, being synthesized and evaluated for in vitro antiplasmodial activity. Among them, compounds 3−6 and 10 inhibited the growth of the W2 strain at µM concentrations, with low cytotoxicity against the human cell line. In silico physicochemical and pharmacokinetic properties were found to be favorable for oral administration. The compound 10 provided the best results against CM, with important values of parasite growth inhibition on the 5th day post-infection for both curative (67.9%) and suppressive (82%) assays. Furthermore, this compound was able to elongate mice survival and protect them against the development of the experimental model of CM (>65%). Compound 10 also induced reduction of the NO level, possibly by interaction with iNOS. Therefore, this alkaloid showed promising activity for the treatment of malaria and was able to prevent the development of experimental cerebral malaria (ECM), probably by reducing NO synthesis.

4.
Parasitol Res ; 121(5): 1389-1406, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35169883

RESUMO

Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, being fatal if untreated. In search of a more effective treatment for VL, one of the main strategies is the development and screening of new antileishmanial compounds. Here, we reported the synthesis of seven new acetyl functionalized 1,2,3-triazolium salts, together with four 1,2,3-triazole precursors, and investigated their effect against different strains of L. infantum from dogs and humans. The 1,2,3-triazolium salts exhibited better activity than the 1,2,3-triazole derivatives with IC50 range from 0.12 to 8.66 µM and, among them, compound 5 showed significant activity against promastigotes (IC50 from 4.55 to 5.28 µM) and intracellular amastigotes (IC50 from 5.36 to 7.92 µM), with the best selective index (SI ~ 6-9) and reduced toxicity. Our findings, using biochemical and ultrastructural approaches, demonstrated that compound 5 targets the mitochondrion of L. infantum promastigotes, leading to the formation of reactive oxygen species (ROS), increase of the mitochondrial membrane potential, and mitochondrial alteration. Moreover, quantitative transmission electron microscopy (TEM) revealed that compound 5 induces the reduction of promastigote size and cytoplasmic vacuolization. Interestingly, the effect of compound 5 was not associated with apoptosis or necrosis of the parasites but, instead, seems to be mediated through a pathway involving autophagy, with a clear detection of autophagic vacuoles in the cytoplasm by using both a fluorescent marker and TEM. As for the in vivo studies, compound 5 showed activity in a mouse model of VL at 20 mg/kg, reducing the parasite load in both spleen and liver (59.80% and 26.88%, respectively). Finally, this compound did not induce hepatoxicity or nephrotoxicity and was able to normalize the altered biochemical parameters in the infected mice. Thus, our findings support the use of 1,2,3-triazolium salts as potential agents against visceral leishmaniasis.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Animais , Antiprotozoários/uso terapêutico , Cães , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Sais/farmacologia , Sais/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico
5.
Chem Biol Interact ; 355: 109848, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149084

RESUMO

Chloroquine (CQ) was the most effective and widely used drug for the prophylaxis and treatment of severe and non-severe malaria. Although its prophylactic use has led to resistance to P. falciparum in all endemic countries, CQ still remains the drug of choice for the treatment of vivax malaria. Otherwise, the speed in which parasite resistance to available antimalarials rises and spreads in endemic regions points to the urgent need for the development of new antimalarials. Quinoline derivatives have been used as a tool in the search for new drugs and were investigated in the present study in an attempt to produce a HIT compound to avoid the cerebral malarial (CM). Seven compounds were synthesized, including three quinoline derivate salts. The cytotoxicity and antiplasmodial activity were assayed in vitro, highlighting compound 3 as a HIT, which also showed interaction with ferriprotoporphyrin IX similarly to CQ. Physicochemical and pharmacokinetic properties of absorption were found to be favorable when analyzed in silico. The in vivo assays, using the experimental cerebral malaria (ECM) model, showed important values of parasite growth inhibition on the 7th day-post infection (Q15 15 mg/kg: 76.9%, Q30 30 mg/kg: 90,1% and Q50 50 mg/kg: 92,9%). Compound 3 also showed significant protection against the development of CM, besides hepatic and renal parameters better than CQ. In conclusion, this quinoline derivative demonstrated promising activity for the treatment of malaria and was able to avoid the development of severe malaria in mice.


Assuntos
Antimaláricos/uso terapêutico , Malária Cerebral/tratamento farmacológico , Plasmodium falciparum/fisiologia , Quinolinas/uso terapêutico , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Encéfalo/parasitologia , Encéfalo/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Malária Cerebral/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Taxa de Sobrevida
7.
Biomed Pharmacother ; 141: 111857, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323702

RESUMO

Quinoline and 1,2,3-triazoles are well-known nitrogen-based heterocycles presenting diverse pharmacological properties, although their antileishmanial activity is still poorly exploited. As an effort to contribute with studies involving these interesting chemical groups, in the present study, a series of compounds derived from 4-aminoquinoline and 1,2,3-triazole were synthetized and biological studies using L. amazonensis species were performed. The results pointed that the derivative 4, a hybrid of 4-aminoquinoline/1,2,3-triazole exhibited the best antileishmanial action, with inhibitory concentration (IC50) values of ~1 µM against intramacrophage amastigotes of L. amazonensis , and being 16-fold more active to parasites than to the host cell. The mechanism of action of derivative 4 suggest a multi-target action on Leishmania parasites, since the treatment of L. amazonensis promastigotes caused mitochondrial membrane depolarization, accumulation of ROS products, plasma membrane permeabilization, increase in neutral lipids, exposure of phosphatidylserine to the cell surface, changes in the cell cycle and DNA fragmentation. The results suggest that the antileishmanial effect of this compound is primarily altering critical biochemical processes for the correct functioning of organelles and macromolecules of parasites, with consequent cell death by processes related to apoptosis-like and necrosis. No up-regulation of reactive oxygen and nitrogen intermediates was promoted by derivative 4 on L. amazonensis -infected macrophages, suggesting a mechanism of action independent from the activation of the host cell. In conclusion, data suggest that derivative 4 presents selective antileishmanial effect, which is associated with multi-target action, and can be considered for future studies for the treatment against disease.


Assuntos
Aminoquinolinas/farmacologia , Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Triazóis/farmacologia , Aminoquinolinas/síntese química , Animais , Antiprotozoários/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Organelas/efeitos dos fármacos , Fosfatidilserinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triazóis/síntese química
8.
Front Microbiol ; 12: 583834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584607

RESUMO

PF-429242 is an inhibitor of subtilisin, an important protease found in Leishmania. However, studies regarding the effect of PF-429242 on Leishmania are scarce. In this work we evaluated the antileishmanial effect of PF-429242 against Leishmania infantum and the mechanism involved in the death of the parasite. PF-429242 had low toxicity against mammalian cells (peritoneal macrophages) (CC50 = 189.07 µM) and presented activity against L. infantum promastigotes (IC50 = 2.78 µM) and intracellular amastigotes (IC50 = 14.07 µM), indicating selectivity toward the parasite. Transmission electron microscopy (TEM), as well as staining of L. infantum promastigotes with MitoTracker® Red, rhodamine 123 and MitoSOX, revealed that the mitochondria was a potential target of PF-429242. In addition, PF-429242 caused an accumulation of neutral lipids in promastigotes, which was demonstrated by Nile Red staining and TEM, and induced oxidative stress (H2DCFDA staining). Furthermore the formation of autophagic vacuoles in L. infantum promastigotes was observed by MDC staining and TEM. However, the killing induced by PF-429242 in L. infantum promastigotes appeared to be unrelated to apoptosis and/or necrosis as there was no phosphatidylserine externalization, DNA fragmentation or alterations in the permeability of the parasite plasma membrane, as assessed by annexin V-FITC, TUNEL and propidium iodide staining, respectively. The morphological and ultrastructural evaluation of the promastigotes by optical microscopy, scanning electron microscopy (SEM) and TEM, revealed the presence of parasites with flagellar defects. TEM analysis of the intracellular amastigotes indicated that mitochondrial damage and autophagy could also be involved in the death of these forms after treatment with PF-429242. In addition, PF-429242 treatment stimulated NO production from infected macrophage, but only at a high concentration (100 µM), as well as an increase of TNF levels after treatment with 10 µM of PF-429242. The compound did not stimulate ROS or IL-10 production. Together, these data highlight the antileishmanial potential of PF-429242, inducing several cellular alterations in the parasite, such as mitochondrial damage, neutral lipids accumulation, oxidative stress and autophagy which culminate in the death of L. infantum, as well as modulating host cellular responses that favor the development of an immune response against the parasite.

9.
Trans R Soc Trop Med Hyg ; 115(8): 896-903, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347595

RESUMO

BACKGROUND: Despite high seroprevalence of asymptomatic infection in humans, toxoplasmosis can manifest as a severe systemic disease, as occurs in the congenital infection. Here we evaluate the seroprevalence of Toxoplasma infection among pregnant women in a highly urbanized area of Brazil. METHODS: A robust seroepidemiological study was conducted using laboratory databases of anti-Toxoplasma gondii serological results together with information on age, month/year of diagnosis and place of residence of pregnant women in the public health system of the city of Juiz de Fora, Brazil. RESULTS: Of 5895 pregnant women analysed, 54.7% showed seronegativity and 44.4% showed seropositivity for immunoglobulin G (IgG) antibodies against Toxoplasma gondii. This seropositivity rate increased to 68.3% when only considering participants from rural areas. Multivariate analysis revealed higher odds of being seropositive associated with age (odds ratio [OR] 1.06 [confidence interval {CI} 1.05 to 1.07]) and with living in rural areas (OR 2.96 [CI 1.64 to 5.36]). The spatial distribution of IgG seropositivity indicated a higher prevalence concentrated in rural and peripheral neighbourhoods. CONCLUSIONS: This is the first report to use spatial analysis to show a cluster of Toxoplasma infection in rural and peripheral neighbourhoods of a highly urbanized municipality, which highlights the need for adequate healthcare actions to be implemented for women living in these areas.


Assuntos
Toxoplasma , Anticorpos Antiprotozoários , Brasil/epidemiologia , Cidades , Estudos Transversais , Feminino , Humanos , Imunoglobulina M , Gravidez , Gestantes , Fatores de Risco , Estudos Soroepidemiológicos
10.
Parasitology ; 147(14): 1792-1800, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32958098

RESUMO

Vitamin D has been reported to activate macrophage microbicidal mechanisms by inducing the production of antimicrobial peptides and nitric oxide (NO), but conversely has been shown to contribute to a greater susceptibility to Leishmania amazonensis infection in mice. Thus, this study aimed to evaluate the role of vitamin D during intracellular infection with L. amazonensis by examining its effect on macrophage oxidative mechanisms and parasite survival in vitro. Vitamins D2 and D3 significantly inhibited promastigote and amastigote growth in vitro. Vitamin D3 was not able to induce NO and reactive oxygen species (ROS) production in uninfected macrophages or macrophages infected with L. amazonensis. In addition, vitamin D3 in combination with interferon (IFN)-γ did not enhance amastigote killing and in fact, significantly reduced NO and ROS production when compared with the effect of IFN-γ alone. In this study, we demonstrated that vitamin D directly reduces parasite growth in infected macrophages (approximately 50-60% at 50 µm) but this effect is independent of the activation of macrophage oxidative mechanisms. These findings will contribute to a better understanding of the role of vitamin D in cutaneous leishmaniasis.


Assuntos
Antiparasitários/farmacologia , Colecalciferol/farmacologia , Ergocalciferóis/farmacologia , Leishmania mexicana/efeitos dos fármacos , Vitaminas/farmacologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Rev Soc Bras Med Trop ; 53: e20200091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578713

RESUMO

INTRODUCTION: The drugs currently available for leishmaniasis treatment have major limitations. METHODS: In vitro and in vivo studies were performed to evaluate the effect of a quinoline derivative, Hydraqui (7-chloro-4-(3-hydroxy-benzilidenehydrazo)quinoline, against Leishmania amazonensis. In silico analyses of absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters were performed. RESULTS: Hydraqui showed significant in vitro anti-amastigote activity. Also, Hydraqui-treated mice exhibited high efficacy in lesion size (48.3%) and parasitic load (93.8%) reduction, did not cause hepatic and renal toxicity, and showed appropriate ADMET properties. CONCLUSIONS: Hydraqui presents a set of satisfactory criteria for its application as an antileishmanial agent.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Quinolinas/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Quinolinas/química
12.
Chem Biol Interact ; 315: 108850, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31634447

RESUMO

1,2,3-triazolium salts are poorly understood regarding their antileishmanial activity. Hence, as an effort to identify novel chemical scaffolds as antileishmanial agents, a series of 1,2,3-triazolium salts (TS) and corresponding 1,2,3-triazole (T) precursors including new epoxide derivatives were synthesized and assayed against Leishmania amazonensis promastigote and intracellular amastigote forms. Among them, the compound TS-6 exhibited promising activity on promastigotes (IC50 = 3.61 µM) and intracellular amastigotes (IC50 = 7.61 µM) of L. amazonensis, superior to miltefosine (IC50 > 10.0 µM), used as reference drug. In addition, TS-6 showed negligible cytotoxicity on murine peritoneal macrophages with a SI of about 10. Studies on the mode of action of TS-6 indicate mitochondrial dysfunction through an increase in 'total' and mitochondrial-ROS as well as depolarization of mitochondrial membrane potential of L. amazonensis promastigotes. In silico physicochemical studies indicate that the TS-6 could potentially be used as an oral drug.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Animais , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia
13.
Rev. Soc. Bras. Med. Trop ; 53: e20200091, 2020. graf
Artigo em Inglês | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1136875

RESUMO

Abstract INTRODUCTION: The drugs currently available for leishmaniasis treatment have major limitations. METHODS: In vitro and in vivo studies were performed to evaluate the effect of a quinoline derivative, Hydraqui (7-chloro-4-(3-hydroxy-benzilidenehydrazo)quinoline, against Leishmania amazonensis. In silico analyses of absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters were performed. RESULTS: Hydraqui showed significant in vitro anti-amastigote activity. Also, Hydraqui-treated mice exhibited high efficacy in lesion size (48.3%) and parasitic load (93.8%) reduction, did not cause hepatic and renal toxicity, and showed appropriate ADMET properties. CONCLUSIONS: Hydraqui presents a set of satisfactory criteria for its application as an antileishmanial agent.


Assuntos
Animais , Feminino , Quinolinas/uso terapêutico , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Antiprotozoários/uso terapêutico , Quinolinas/química , Leishmaniose Cutânea/parasitologia , Modelos Animais de Doenças , Carga Parasitária , Camundongos , Camundongos Endogâmicos BALB C
14.
Artigo em Inglês | MEDLINE | ID: mdl-31827562

RESUMO

Schistosomiasis is a neglected tropical disease that affects million people worldwide, mostly in developing countries. Ruta graveolens (Rutaceae) is a plant used in folk medicine to treat several diseases, including parasitic infections. In this study, we reported the in vitro schistosomicidal activity of the R. graveolens extract (Rg) and its active fraction (Rg-FAE). Also, the characterization of Rg-FAE by UPLC-ESI-QTOF-MS analysis and its in vitro antileishmanial activity against Leishmania braziliensis were also performed. In vitro schistosomicidal assays were assessed against adult worms of S. mansoni, while cell viability against peritoneal macrophages was measured by MTT assay. Rg (100 µg/mL) exhibited noticeable schistosomicidal activity, causing 100% mortality and decreasing motor activity of all adult male and female schistosomes, but with low activity against L. braziliensis. After chromatographic fractionation of Rg, fraction Rg-FAE was obtained, showing high activity against adult schistosomes. UPLC-ESI-QTOF-MS analysis of Rg-FAE revealed the presence of eleven alkaloids and one furanocoumarin. No significant antileishmanial activity was found for Rg, while Rg-FAE exhibited activity against L. braziliensis promastigotes. We demonstrated, for the first time, that the R. graveolens extract (Rg) and its alkaloid-rich fraction (Rg-FAE) are active against adult worms of S. mansoni, with no significant cytotoxicity on macrophages. Our findings open the route to further antiparasitic studies with the active fraction of R. graveolens and its identified compounds, especially alkaloids.

15.
J Pharm Pharmacol ; 71(12): 1784-1791, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31579947

RESUMO

The alkylaminoalkanethiosulfuric acids (AAATs) are amphipathic compounds effective against experimental schistosomiasis, of low toxicity, elevated bioavailability after a single oral dose and prompt tissue absorption. OBJECTIVES: To explore the in-vitro antileishmanial potential of AAATs using five compounds of this series against Leishmania (Viannia) braziliensis. METHODS: Their effects on promastigotes and axenic amastigotes, and cytotoxicity to macrophages were tested by the MTT method, and on Leishmania-infected macrophages by Giemsa stain. Effects on the mitochondrial membrane potential of promastigotes and axenic amastigotes and DNA of intracellular amastigotes were tested using JC-1 and TUNEL assays, respectively. KEY FINDINGS: The 2-(isopropylamino)-1-octanethiosulfuric acid (I) and 2-(sec-butylamino)-1-octanethiosulfuric acid (II) exhibit activity against both promastigotes and intracellular amastigotes (IC50 25-35 µm), being more toxic to intracellular parasites than to the host cell. Compound I induced a loss of viability of axenic amastigotes, significantly reduced (30%) the mitochondrial membrane potential of both promastigotes and axenic amastigotes and promoted selective DNA fragmentation of the nucleus and kinetoplast of intracellular amastigotes. CONCLUSIONS: In this previously unpublished study of trypanosomatids, it is shown that AAATs could also exhibit selective antileishmanial activity, a new possibility to be investigated in oral treatment of leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania braziliensis/isolamento & purificação , Leishmaniose/tratamento farmacológico , Ácidos Sulfúricos/farmacologia , Administração Oral , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Concentração Inibidora 50 , Leishmania braziliensis/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Ácidos Sulfúricos/administração & dosagem , Ácidos Sulfúricos/química
16.
J Pharm Pharmacol ; 71(12): 1854-1863, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31595530

RESUMO

OBJECTIVES: The in vitro antileishmanial effect of analogues of resveratrol (AR) present in the N-aryl imines and N-aryl hydrazones series was investigated. In addition, possible parasite targets were evaluated. METHODS: Antipromastigote activity of Leishmania amazonensis, L. braziliensis and L. infantum, as well as the cytotoxicity on macrophages was determined by MTT assay and L. braziliensis-infected macrophages effect by Giemsa stain. After staining, effects on the parasite targets were analysed by flow cytometry or by fluorescence microscopy. KEY-FINDINGS: Among the tested compounds, the derivative AR26 showed the best effect against promastigotes of all Leishmania species (IC50  < 3.0 µg/ml), being more active than miltefosine, the control drug. AR26 was also effective against amastigotes of L. braziliensis (IC50  = 15.9 µg/ml), with low toxicity to mammalian cells. The evaluation of mechanism of action of AR26 on L. braziliensis promastigotes indicates mitochondrial potential depolarization, plasma membrane permeabilization, interference in the progression of the cell cycle and accumulation of autophagic vacuoles. In addition, any increase of the reactive oxygen species levels was detected in the treated L. braziliensis-macrophages. CONCLUSIONS: Data indicate that the antileishmanial activity of AR26 is related to multitarget action, and the resveratrol analogues could be used in future studies as antileishmanial agent.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Resveratrol/farmacologia , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Modelos Animais de Doenças , Feminino , Hidrazonas/administração & dosagem , Hidrazonas/química , Hidrazonas/farmacologia , Iminas/administração & dosagem , Iminas/química , Iminas/farmacologia , Concentração Inibidora 50 , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/administração & dosagem , Resveratrol/análogos & derivados
17.
Eur J Med Chem ; 184: 111742, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31605866

RESUMO

In this work, we report the antileishmanial activity of 15 compounds based on 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, being 13 new compounds. All compounds were tested against promastigotes and Leishmania amazonensis-GFP amastigotes, as well as murine macrophages. Besides, studies about the mechanism of action of the best antileishmanial compounds and in silico physicochemical and pharmacokinetic properties were performed. Studies about the mechanism of action of representative compounds of each class showed slight differences in mode of action and both are able to cause mitochondrial depolarization and increase of intracellular ROS levels. Through computational tool and further analysis of the physicochemical and pharmacokinetic parameters, the results indicating good oral bioavailability. These results confirm the potential of 2-pyrimidinyl derivatives as lead compounds in antileishmanial drug discovery.


Assuntos
Antiprotozoários/farmacologia , Hidrazonas/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Pirimidinas/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Hidrazonas/síntese química , Hidrazonas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirimidinas/síntese química , Pirimidinas/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
18.
Vet Parasitol ; 271: 38-44, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31303201

RESUMO

A nucleoside triphosphate diphosphohydrolase-1 (NTPDase 1) was identified on the surface, flagellum and kinetoplast from L. infantum promastigotes by immunocytochemistry and confocal laser scanning microscopy, using immune sera that recognized specifically the B domain of NTPDase 1 and produced against synthetic peptides (LbB1LJ and LbB2LJ) derived from this domain. The polyclonal antibodies had effective antileishmanial effect, reducing significantly in vitro promastigotes growth (21-25%), an antiproliferative effect also demonstrated by immune sera produced against recombinant r-pot B domain, and two other synthetic peptides (potB1LJ and potB2LJ). In addition, using these biomolecules in ELISA technique, IgG1 and IgG2 subclasses reactivities of either healthy dogs or infected by L. infantum and classified clinically as asymptomatic, oligosymptomatic and symptomatic were tested. Analysis of distinct IgG1 and IgG2 seropositivities patterns suggested antibody subclasses binding epitopes along B domain for protection against infection, indicating this domain as a new tool for prophylactic and immunotherapeutic investigations.


Assuntos
Anticorpos Antiprotozoários/imunologia , Doenças do Cão/imunologia , Imunoglobulina G/imunologia , Leishmania infantum/enzimologia , Leishmania infantum/imunologia , Leishmaniose Visceral/veterinária , Nucleosídeo-Trifosfatase/imunologia , Animais , Anticorpos Antiprotozoários/metabolismo , Doenças do Cão/parasitologia , Cães , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Domínios Proteicos/imunologia
19.
Exp Parasitol ; 200: 1-6, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30904692

RESUMO

Nucleoside triphosphate diphosphohydrolase (NTPDase) 1 from intracellular amastigotes of Leishmania infantum-infected macrophage was identified by immunocytochemistry and confocal laser scanning microscopy using antibodies that specifically recognize its B-domain. This enzyme was previously characterized in Leishmania promastigote form, and here it is shown to be susceptible to pentamidine isethionate (PEN). In initial assays, this antileishmanial compound (100 µM) reduced 60% phosphohydrolytic activity of promastigotes preparation. An active NTPDase 1 was then isolated by non-denaturing gel electrophoresis, and PEN (10 µM) inhibited 74% and 35% of the ATPase and ADPase activities, respectively, of this pure protein. In addition, PEN 0.1-1 µM inhibited 56% potato apyrase activity, a plant protein that shares high identity with Leishmania NTPDase 1. In contrast, amphotericin B, fluconazole, ketoconazole or allopurinol did not significantly affect phosphohydrolytic activity of either promastigotes preparation or potato apyrase. This work suggests amastigote NTPDase 1 as a new molecular target, and inhibition of its catalytic activity by pentamidine can be part of the mode of action of this drug contributing with the knowledge of its antileishmanial effect.


Assuntos
Antiprotozoários/farmacologia , Apirase/antagonistas & inibidores , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Pentamidina/farmacologia , Animais , Antígenos CD , Imuno-Histoquímica , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal
20.
Exp Parasitol ; 195: 78-86, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30385267

RESUMO

Currently, available treatment options for leishmaniasis are limited and unsatisfactory. In a previous study, a quinoline derivative (AMQ-j), exhibited a strong effect against Leishmania amazonensis and its antileishmanial activity was preliminarily associated with mitochondrial dysfunction. The present study further explores the antileishmanial effect of this compound against L. amazonensis, as well as determines the main cellular processes involved in the death of the parasite. Moreover, this study evaluated the in vivo effect of the AMQ-j in BALB/c mice experimentally infected by L. amazonensis. The results showed that the compound AMQ-j induces a set of morphological and biochemical features that could correlate with both autophagy-related and apoptosis-like processes, indicating intense mitochondrial swelling, a collapse of the mitochondrial membrane potential, an abnormal chromatin condensation, an externalization of phosphatidylserine, an accumulation of lipid bodies, a disorganization of cell cycle, a formation of autophagic vacuoles, and an increase of acidic compartments. Treatment with AMQ-j through an intralesional route was effective in reducing the parasite burden and size of the lesion. No significant increase in the serum levels of hepatic or renal damage toxicity markers was observed. These findings contribute to the understanding of the mode of action of quinoline derivatives involved in the death of Leishmania parasites and encourage new studies in other experimental models of Leishmania infection.


Assuntos
Aminoquinolinas/farmacologia , Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Aminoquinolinas/uso terapêutico , Aminoquinolinas/toxicidade , Animais , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Ciclo Celular/efeitos dos fármacos , Chlorocebus aethiops , Creatinina/metabolismo , Orelha Externa/parasitologia , Orelha Externa/patologia , Feminino , Concentração Inibidora 50 , Rim/efeitos dos fármacos , Leishmania mexicana/citologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...